
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
We are a professional manufacturer of HPMC, and we located in Hebei Province Xinji provincial clean chemical Industry Park, in the Beijing Tianjin Hebei metropolitan area. The park is 250 kilometers away from Beijing and Tianjin, 250 kilometers away from the Capital Airport and Tianjin Airport, 100 kilometers away from Shijiazhuang Zhengding Airport, and 250 kilometers away from Tianjin Port; The Shihuang Expressway, National Highway 307, Provincial Hengjing Line, Shide Railway, and Shiqing High speed Railway pass through Xinji, with convenient transportation and unique location advantages for economic development relying on the central city, airport, and seaport. It is a key cultivated enterprise in Xinji City, covering an area of more than 80 acres, with 200 employees and 11 senior technical personnel. Our factory adopts the German horizontal kettle "one-step production process", with a 100% product quality rate to meet different customer needs. The daily production capacity has now reached 80-100 tons. Our company has more than 20 years of experience in cellulose production and sales, and has exported to more than 30 countries and regions, highly praised and trusted by users both domestically and internationally.

Production

Experience

Acreage
Monofilament polypropylene fiber, a remarkable advancement in the field of construction materials, serves as a pivotal component in modern infrastructure and industrial applications. Renowned for its unparalleled properties, these fibers have marked profound transformations across various domains, leveraging their superior quality, durability, and versatility. Polypropylene, a polymer-based material, formulates the foundation of these fibers, infusing them with characteristics that withstand stringent environmental conditions. Engineered for precision, monofilament fibers exhibit exceptional tensile strength and resistance to moisture, chemicals, and abrasion. This strength and resilience stem from meticulous manufacturing processes that align with rigorous industry standards, ensuring optimal performance in demanding situations. Industrial experts acknowledge the unique benefits of incorporating monofilament polypropylene fibers into concrete. One of the primary advantages is the enhancement of concrete's structural integrity. When mixed with concrete, these fibers intersperse evenly, preventing defects such as cracking, shrinking, and structural weaknesses that typically occur due to environmental changes or mechanical stresses. The fibers act as reinforcements, distributing stress across the structure, thereby enhancing its longevity and reducing maintenance costs over time. Incorporating monofilament fibers in construction projects has been validated by numerous case studies. For instance, highway infrastructures subjected to extreme weather conditions have shown significant improvements in durability and wear resistance with these fibers. Construction specialists have observed reductions in crack formations and increased tensile strength, demonstrating real-world applications where monofilament polypropylene fibers contribute effectively to extending the lifespan of concrete constructs. The environmental impact of construction practices necessitates a shift towards sustainable solutions. Monofilament polypropylene fibers support this transition by minimizing the dependency on traditional reinforcement materials like steel mesh or rebar . With a lower carbon footprint during production and application phases, they offer an eco-friendly alternative, aligning with global initiatives to reduce greenhouse gas emissions and preserve natural resources. Quality and safety standards upheld in the production of these fibers play a crucial role in establishing their credibility. Manufacturers adhere to strict guidelines to produce fibers that are consistent in size and performance, ensuring reliability across different applications. Their continued evolution is marked by innovations aiming to enhance efficiency and adaptability in various environmental conditions, further solidifying their position in the market as a trusted material for reinforcement. monofilament polypropylene fiber The versatility of monofilament polypropylene fibers extends beyond traditional construction applications. They find prominence in contemporary architectural designs that emphasize sustainability without compromising on aesthetic appeal. Lightweight yet formidable, these fibers enable architects and designers to explore innovative designs by allowing flexibility in form and surface finish. Moreover, monofilament polypropylene fibers are indispensable in specialized applications such as the construction of water-resistant structures, including swimming pools, water tanks, and marine constructions. The fibers’ inherent resistance to microbial growth and chloride ion penetration enhances the longevity and safety of such structures, proving essential in maintaining hygienic standards and reducing maintenance expenses. In agricultural and geotechnical engineering, these fibers are instrumental in erosion control projects, where they reinforce soil and provide stability to landscapes subject to erosion forces. Their application not only ensures the structural integrity of agricultural lands and geotechnical projects but also contributes to sustainable land management practices, promoting environmental conservation and land preservation. The trustworthiness of monofilament polypropylene fibers is reinforced by endorsements from leading civil engineering associations and their compliance with international standards in construction and safety. Industry professionals gravitate towards their use due to comprehensive research and data backing their effectiveness and efficiency. To ensure continued advancements in infrastructure, experts advocate for ongoing research and integration of new technologies that can complement the attributes of monofilament polypropylene fibers. Collaboration between industry, academia, and research institutions will play a crucial role in exploring novel applications and enhancing the effectiveness of these fibers in forthcoming projects. In conclusion, monofilament polypropylene fiber represents a significant leap toward innovative and sustainable construction practices. Its multifaceted benefits, underpinned by expert validation and environmental advantages, herald a new era where the construction industry can meet modern challenges through durable, reliable, and ecologically responsible solutions. These fibers not only stand as a testament to engineering excellence but also reinforce the future of infrastructure development on a global scale.
Rubber powder —the micronized particles produced from waste or virgin rubber—has emerged as an essential raw material across numerous industrial sectors. Key advantages such as environmental sustainability, versatility, and significant cost savings have rapidly enhanced its adoption. This guide navigates the current trends, rubber powder uses , rubber powder price evolution, technological specifications, leading vendors, and showcases detailed insights into product lines including the latest Rubber powder-821 . Access the official Rubber powder-821 here . Rubber Powder in High-Performance Coatings What is Rubber Powder? Grades, Sizes, and Specifications Rubber powder is produced by grinding rubber waste (tyres, industrial scrap, nitrile, SBR, etc.) into fine particles, typically ranging from 80 mesh (180 μm) to ultra-fine grades >200 mesh (75 μm or finer). The product may include nitrile rubber powder for oil resistance, rubber anti tack powder for improved processing, and talc powder for rubber as a compounding aid. Depending on origin and process ( cryogenic grinding, ambient milling, water-jet micronization ), rubber powder is categorized by particle morphology, purity, and technical indices such as ash content, bulk density, and surface area. Certification to ISO 9001:2015 and ANSI/ASTM D5603 is now standard for reputable manufacturers. Fully Automated Rubber Powder Production Line Industry Trends: Rubber Powder Uses & Market Outlook Application Key Performance Requirements Rubber Powder Grade Market Share (2023, %) Tire Manufacturing High tensile strength, abrasion resistance Fine rubber powder, 80–120 mesh 41.2 Rubber Coatings & Sealants Adhesion, flexibility, water/chemical resistance Ultra-fine, surface-treated 18.7 Plastics Modification Compounding efficiency, modulus enhancement Nitrile rubber powder, SBR types 12.4 Construction Materials Durability, anti-slip, impact resistance Fine & coarse blends 11.3 Road Asphalt & Bitumen Modifier Improved elasticity, rut-resistance 80 mesh rubber powder 9.4 Others (Animal Mats, Anti-vibration Pads, Sport Fields) Elasticity, shock absorption Coarse/fine blend 7.0 Manufacturing Process: Rubber Powder Uses Production Workflow Raw Material Selection (Tyre Scrap, Nitrile, SBR, etc.) ➜ Pre-Shredding (Mechanical cutting) ➜ Cryogenic/Ambient Milling (Powdering to 80–200 mesh) ➜ Magnetic Separation (Remove metals) ➜ Particle Classification (Sieve, Air Separator) ➜ Surface Treatment (Anti-tack, Blending, Additive) ➜ Packing & QC (ISO/ANSI Test) Key standards: ISO 9001:2015 (Quality Management), ASTM D5603 ; Typical industry lifespans for fine rubber powder coating : 8–15 years (in situ). Explore detailed production technology for rubber powder uses Fine Rubber Powder in High-Elastic Applications Rubber Powder-821 : Technical Specifications & Performance Rubber powder-821 is produced through advanced cryogenic separation, offering exceptional uniformity and stable particle morphology suitable for high-end engineering and polymer compounding applications. Material: 100% high-quality reclaimed SBR/Nitrile, ISO 9001:2015 certified Particle Size: 80–150 mesh (≤180–106 μm) Purity: ≥99% (low ash content <0.75%) Bulk Density: 0.38–0.51 g/cm³ Surface Treatment: Anti-tack proprietary blend Color: Deep black or customer-defined via custom formula Compliance: ISO 9001:2015, ASTM D5603, RoHS/FDA on request Service Life: 10–16 years (typical in coatings, asphalt, plastics) Rubber Powder Price & Grade Comparison Technical Parameter Table: Rubber Powder-821 Parameter Rubber Powder-821 Standard Rubber Powder Nitrile Rubber Powder Particle Size (mesh) 80–150 mesh 60–100 mesh 100–200 mesh Purity (%) ≥99.0 95.0–97.0 ≥98.5 Ash Content (%) <0.75 <1.6 <0.8 Bulk Density (g/cm³) 0.38–0.51 0.34–0.45 0.40–0.53 Elongation at Break (%) >320 250–310 >300 Surface Treatment Anti-tack, Customized Talc (optional) None/Custom Compliance ISO, ASTM, RoHS, FDA* ISO, ASTM ISO, ASTM, RoHS* Rubber Powder Price Analysis (2024) Rubber powder price is determined by feedstock source, mesh size, purity, and treatment (anti-tack, talc-coated, etc.). Typical ex-factory price (June 2024): $490–$850/MT for 100 mesh general grade; $950–$1150/MT for nitrile/fine powder specialties. Notably, certified grades for food contact or medical compounding command a 20-45% premium. Vendor Comparison: Leading Rubber Powder Production Line Manufacturers Manufacturer Key Product Line Strengths Certification Lead Time SSH Chemical (China) Rubber powder-821, Fine/Nitrile grades High purity, Custom surface, ISO/ASTM tested ISO 9001, FDA/RoHS* 7–20 days RubberGreen (France) EcoRub 110–140 mesh EU reach, BREEAM building certifications ISO 9001, BREEAM 15–30 days GENAN (Denmark) Superfine, Asphalt Modifier Global sourcing, Recycling focus ISO 14001, ISO 9001 10–28 days ADEKA (Japan) Nitrile Rubber Powder lines Automotive, Electronic uses ISO 9001, RoHS 21–35 days Customization & OEM Solutions Leading factories provide tailor-made rubber powder production line setups: mesh/fineness, surface-blending (talc powder for rubber, bio anti-tack agents), color, and bulk packaging according to application sector—be it petrochemical, water treatment, anti-slip floors or high-resistance road asphalts. Consult with SSH’s engineering team for engineered rubber powder uses OEM solutions . Application Case Study: Eco-Asphalt Reinforcement (Brazil 2023) Objective: Improve rutting resistance in tropical road surfaces. Implementation: SSH Rubber powder-821 5% (w/w) blended in polymer modified asphalt. Result: 26.7% reduction in rut depth after 30,000 load cycles (vs. control); 19% improvement in elastic modulus. Confirmed by ASTM D412 and ISO 37:2017 tests. Client Feedback: “Exceptional long-term flexibility and cost savings. After 18 months, virtually no surface fatigue.” For custom formulation support, refer to SSH technical team . Rubber Anti Tack Powder: Surface Performance Technical Advantages of Rubber Powder Uses Solutions Resource Circularity: 1 ton of rubber powder reduces landfill by 400kg, cuts carbon dioxide emissions by 510kg (source: ETRA Europe). Performance Boost: Up to 22% tensile strength gain in thermoplastic composites using nitrile rubber powder (Journal of Polymers, 2023). Cost Efficiency: Typical material cost saving: $120–$280/MT vs. virgin rubber/synthetic alternatives. Customization: Tailored granulation and surface chemistry to fit diverse rubber powder uses in coatings, plastics, roadways, and more. Regulatory Compliance: Products tested to ISO, ASTM, FDA, RoHS for chemical safety and international trade acceptance. Global Application: Real-World Feedback Petrochemical plants use SSH Rubber powder-821 for gaskets and seals, reporting a 35% improvement in lifecycle due to enhanced anti-aging properties (Client: CNPC, 2023). Water utility companies benefit from anti-corrosion linings, with a 14-year service record & zero failures in treated pipelines (Singapore PUB, ref.). Automotive factories deploy fine rubber powder for NVH (noise, vibration, harshness) reduction, credited by ISO/TS 16949 auditors. FAQs: Rubber Powder Uses Expertise & Application Guidance Frequently Asked Technical Questions 1. What raw materials are suitable for rubber powder production line ? Crumb rubber from end-of-life tires (ELTs), SBR, NBR, EPDM scrap, and select virgin compounds. For specialty nitrile rubber powder , high acrylonitrile NBR is used. 2. What is the typical particle size for high-value rubber powder uses ? Coatings and plastics prefer 80–150 mesh fine powder. Asphalt and construction: 30–80 mesh. Ultra-fine uses (200+ mesh) enable smooth compounding in adhesives. 3. How does rubber anti tack powder optimize processing? It prevents agglomeration during transport/storage and eases blending in high-shear mixers. Anti-tack agents may be food-safe (FDA compliant) per application. 4. Can talc powder for rubber be used in all compound types? Talc acts as a processing aid mainly in SBR/NBR formulations, improving flow and compatibility but is not always necessary for EPDM or pure synthetic applications. 5. What installation/compatibility standards apply to rubber powder uses in construction? Testing follows ASTM C117 (particle size), EN 13108-9 (bituminous mixes), and ISO 37 for mechanical performance. Compounds must pass local building/construction codes. 6. What quality tests do reputable factories conduct? ISO 9001:2015 process audits, ASTM D412 (tensile), EN 1279 (thermal aging), RoHS and, for food/health markets, FDA migration and contamination assays. 7. What is the expected delivery time and warranty for Rubber powder-821 ? Standard lead time: 9–18 days for Rubber powder-821 . Quality warranty minimum 18 months. Extended application support is available. Ordering, Delivery, and Customer Service Commitment MOQ: 500kg per grade (customizable for R&D). Lead time: 9–18 days typically; Expedited options for certified customers. Warranty: 18–24 months standard. Product traceability per ISO. After-sales service: Application guidance, test report provision, claim response within 72 hours (100+ international customers supported). Summary & Industry References Rubber powder uses are fast-evolving within global industries, supporting a spectrum of applications from infrastructure to advanced polymers. Preference for high-spec products like Rubber powder-821 is steered by performance, regulatory compliance, and lifecycle economy. With continued R&D and sustainable engineering, such materials will be critical for circular economy goals and technical innovation. Industry References & Further Reading: - Journal of Cleaner Production: "Recycled Rubber Powders in Bituminous Applications — Life Cycle Analysis" (2023) - European Tyre Recycling Association — Rubber Powder Applications - SpecialChem Polymer Additives: Rubber Powder as Compounding Additive Discover solutions tailored to your project: Contact SSH Rubber Powder Team →
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 24, 2025